
WiFinger: Talk to Your Smart Devices with
Finger-grained Gesture

Hong Li, Wei Yang∗, Jianxin Wang, Yang Xu, Liusheng Huang
University of Science and Technology of China

qubit@ustc.edu.cn

ABSTRACT
In recent literatures, WiFi signals have been widely used to
“sense” people’s locations and activities. Researchers have
exploited the characteristics of wireless signals to “hear” peo-
ple’s talk and “see” keystrokes by human users. Inspired by
the excellent work of relevant scholars, we turn to explore the
field of human-computer interaction using finger-grained ges-
tures under WiFi environment. In this paper, we present Wi-
Finger - the first solution using ubiquitous wireless signals to
achieve number text input in WiFi devices. We implement a
prototype of WiFinger on a commercial Wi-Fi infrastructure.
Our scheme is based on the key intuition that while perform-
ing a certain gesture, the fingers of a user move in a unique
formation and direction and thus generate a unique pattern
in the time series of Channel State Information (CSI) values.
WiFinger is deigned to recognize a set of finger-grained ges-
tures, which are further used to realize continuous text input
in off-the-shelf WiFi devices. As the results show, WiFinger
achieves up to 90.4% average classification accuracy for rec-
ognizing 9 digits finger-grained gestures from American Sign
Language (ASL), and its average accuracy for single individ-
ual number text input in desktop reaches 82.67% within 90
digits.
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INTRODUCTION
The pervasiveness of WiFi signals spurs a surge in relevant
research, including motion detection, gesture recognition, lo-
calization. Multiple advances have been made both in terms
of accuracy and granularity. In particular, recent literatures
in keystroke recognition [1] and mouth motion [2] detection
have demonstrated the viability of micro-movement detection
with high accuracy using fine-grained radio reflections.
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The research community has studied various methods to clas-
sical gesture recognition, which can be classified into three
categories: audio and radio based approaches, computer vi-
sion based approaches and wearable sensors based approach-
es. Audio and radio based approaches like SoundWave [3]
and radio tomography technologies show a tendency of de-
pending on large scale signal changes, they are not desirable
for identifying micro-movement gestures. Vision based ap-
proaches have the fundamental limitations of requiring line
of sight with enough lighting, and the infrared spectrum of
sunlight often interferes with systems that rely on infrared,
e.g., LeapMotion [4] and Kinect [5]. Hence, such systems
are not appropriate for outdoor use. Wearable sensors based
approaches need wearable sensing devices that attach to the
users’ hand or body, which probably cause inconvenience in
some occasions such as when a user is swimming or bathing,
and it may incur extra cost.

Recently, studies “see” target movements by detecting and
analyzing fine-grained radio reflection which overcomes the
limitations of the above mentioned approaches. These Wi-
Fi signal based human motion recognition systems, such as
WiSee [6], Wi-Vi [7], WiKey [1] and WiHear [2], have been
proposed based on the observation that different human mo-
tions cause different multi-path distortions in WiFi signal-
s. WiSee uses Universal Software Radio Peripheral (USRP)
to capture the Orthogonal Frequency Division Multiplexing
(OFDM) signals and extract Doppler shift in signals reflect-
ed by movement of body or limbs to recognize nine ges-
tures. Wi-Vi applies virtual multi-antenna technology to iden-
tify signal fluctuations caused by body movement. However,
WiSee and WiVi focus on recognizing a set of coarse-grained
gestures or motions, such as kicking, punching, stepping for-
ward/backward. Additionally, they rely on sophisticated sig-
nals which are extracted from software radios, but not readily
available in Commercial Off-The-Shelf (COTS) IEEE 802.11
devices. WiKey and WiHear employ COTS WiFi devices,
one for continuously sending signals, and one for continu-
ously receiving signals. They are both using in specific ap-
plication scenarios such as hearing people’s talk, detecting
human’s keystrokes. And both of them are not specialized in
fine-grained gesture recognition. Melgarejo et al. proposed
a fine-grained gestures recognition scheme which utilized so-
phisticated WARP v3 board equipped with two RE14P direc-
tional patch antennas, however, this scheme needs specialized
devices to extract detailed RF signatures [8]. In our scheme,
we focus on finer-grained micro-movement gestures recogni-
tion and achieve accurate text input on computer or mobile
devices to realize human-computer interaction. Our scheme
extracts Channel State Information (CSI) values from Intel
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5300 (iwl5300) 802.11n Network Interface Card (NIC) by
simply modifying the driver as in [9].

In this paper, we show the potential to identify finer-grained
gestures by using feature information that is easily available
on COTS wireless devices. The key insight is that while per-
forming a certain finer-grained micro motion, the fingers of a
user move in a unique pattern in the time series of CSI values
which we call CSI waveform, for that gesture. In this paper,
we target gestures of 9 digits finer-grained gestures from the
standard ASL, as shown in Figure 1. Those gestures only
involve finger movements and no hand or body movements.
The unique finger movements of each gesture introduce rel-
atively unique multipath distortions in WiFi signals and this
uniqueness can be exploited to recognize gestures.

To translate the above high-level ideas into a working sys-
tem entails a variety of technical challenges: (1) How does
WiFinger detect and capture the subtle signal changes caused
by finger movements of target user? (2) How does WiFinger
analyze the tiny radio reflections and extract distinguishable
features? (3) How does WiFinger compare shape features of
any two finer-grained micro-movement gestures? (4) Will
WiFinger be robust against unpredictable variances(e.g., d-
ifferent users may perform the same gesture in slightly differ-
ently ways)?

This paper addresses the above challenges, and prototypes the
WiFi signals based finer-grained gesture recognition system
called WiFinger using two WiFi devices, a transmitter (e.g., a
router), and a receiver (e.g., a laptop). The transmitter contin-
uously emits signals to the receiver. The target user performs
finger gestures between the transmitter and the receiver.

Our main contributions are summarized as follows:

• Micro-movement analysis via physical layer CSI on off-
the-shelf WLAN infrastructure in a non-invasive and
device-free manner: Our design of WiFinger provides the
first solution using ubiquitous wireless signals to realize
continuous text input in smart WiFi devices. WiFinger cap-
tures finger-grained gesture patterns from physical layer by
modifying the driver of Intel 5300 802.11n NIC. Compared
with Glove-Based input systems such as Sayre glove, Da-
ta glove, etc [10, 11]. WiFinger does not need users wear
gloves or sensors, and meanwhile, it achieves continuous
text input on smart WiFi devices.

• Recognizing finger movements using radiometric charac-
teristics of finger movements: We address the challenge of
identifying finger-grained gestures using subtle radiomet-
ric characteristics under WiFi environment. Our solution-
s are benefiting from the observation that the CSI series
patterns vary among different finger-grained gestures, sin-
gle CSI subcarrier is not enough to finger-grained gesture
recognition. WiFinger adopts a novel method by averag-
ing the extracted finger gesture profiles per 6 subcarriers,
and concatenating them to form a distinguishable feature
for gesture identification.

• Accurate text input using WiFinger in WiFi devices: To e-
valuate the effectiveness of WiFinger, 10 users are volun-
teered to provide training and testing data for our scheme.

Figure 1. Part of finger gestures [12] that WiFinger can detect and rec-
ognize.

Users 2-10 perform 9 digits finger-grained gesture with 35
instances per gesture. To test the impact from the number
of training set, we ask user 1 performs each finger-grained
gesture 70 times. Finally, we get 3465 finger-grained ges-
ture instances in our scheme. After that, we randomly gen-
erate 20 sequences of digits using matlab, there are 18 ran-
dom numbers from 1 to 9 in each sequence. All users select
5 sequences to perform in WiFinger. As is demonstrated by
the results, WiFinger achieves average recognition accura-
cy of 90.4% for each user, and its average accuracy of rec-
ognizing continuously number text input reaches 82.67%.

BACKGROUND
Prior work on gesture recognition can be generally catego-
rized into two groups: device-based and device-free. Device-
based gesture recognition techniques including audio or ra-
dio based [3, 13, 14, 15], vision based [5, 16, 17, 18] and
sensors based [4, 19, 20, 21, 22]. They need extra hard-
ware devices which might lead to high costs, and they are also
constrained by the outside environment such as the ambien-
t noise, light condition, etc. Device-free motion recognition
techniques recognize human gestures using the variations of
wireless signals. It does not need any additional hardware
devices. Researchers have proposed various solutions which
can be grouped into three categories:

RSS Based. Sigg et al. used USRPs which are specialized
hardware devices to capture Received Signal Strength (RSS)
values from WiFi signals [23, 24]. They utilized RSS values
of WiFi signals to recognize four activities including lying
down, crawling, standing and walking and achieved over 80%
recognition accuracy for these four activities. Abdelnasser et
al. proposed WiGest which leverages RSS values in WiFi
signal strength to sense in-air hand gestures around the us-
er’s mobile device [25]. WiGest can achieve a classification
accuracy of 96% for the application actions. According to
the studies by former researchers, RSS values are not suitable
for recognizing fine-grained motions such as gestures in stan-
dard ASL because RSS values only provide coarse-grained
information about channel variations and do not contain fine-
grained information about small scale fading and multi-path
effects caused by micro-movements.

CSI Based. Recently CSI values obtained from COTS Wi-
Fi NICs (such as Intel 5300 and Atheros 9390) are widely
applied to recognize human activities [2, 26, 27, 28, 29, 30]
and localize objects [31, 32, 33]. Han et al. proposed WiFall
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that detects a single human activity of falling [26]. Zou et
al. proposed Electronic Frog Eye that counts the number of
people in a crowd using CSI values by treating the people
reflecting the WiFi signals as “virtual antennas” [29]. Wang
et al. proposed E-eyes that exploits CSI values for recogniz-
ing household activities such as washing dishes and taking a
shower [27]. Zhou et al. proposed to use CSI to detect the
presence of a person in an indoor environment [28]. Wang
et al. proposed WiHear which employs specialized direc-
tional antennas to obtain CSI changes caused by lip move-
ment for recognizing spoken words [2]. Ali et al. proposed
WiKey that uses CSI values obtained from COTS to recog-
nize keystrokes [1]. These splendid research specialized in
specific application scenarios which do not contain continu-
ous text input using CSI characteristics. Therefore, we pro-
pose a scheme which provides a solution to achieve text input
using finger-grained gestures from standard ASL under WiFi
environment.

Specialized Devices Based. Software Defined Radio (SDR)
is a special purpose equipment that provides sophisticat-
ed signal features. Researchers have put forward various
schemes that utilize SDRs to transmit and receive custom
modulated signals for human activity recognition [6, 34, 35,
36]. Pu et al. proposed WiSee that uses a special purpose re-
ceiver design on USRPs to extract small Doppler shifts from
OFDM WiFi transmissions to recognize human gestures [6].
Kellogg et al. presented AllSee that employs specialized ana-
log envelop detector circuit for recognizing gestures within a
distance of up to 2.5 feet using backscatter signals from RFID
or TV transmissions [34]. Adib et al. designed WiTrack and
WiTrack2.0 that apply specially designed frequency modu-
lated carrier wave radio frontend to track human movements
behind a wall [36]. Recently, Chen et al. built an SDR based
custom receiver design to track keystrokes using wireless sig-
nals [37]. Melgarejo et al. proposed a fine-grained gesture
recognition scheme using sophisticated WARP v3 board e-
quipped with two RE14P directional patch antennas [8]. In
contrast to all these schemes above, WiFinger does not need
SDR or any special purpose devices, we utilize COTS WiFi
NICs to recognize fine-grained finger gestures.

CHANNEL STATE INFORMATION
In wireless communications, channel state information refer-
s to known channel properties of a communication link. It
depicts how a signal propagates from the transmitter to the
receiver and represents the combined effect of scattering, fad-
ing and power decay with distance. Modern WiFi devices that
support IEEE 802.11n/ac standards typically consist of mul-
tiple transmitting (TX) and receiving (RX) antennas and thus
support Multiple-Input Multiple-Output (MIMO). In OFDM
system, the channel between each pair of TX and RX com-
prises of multiple subcarriers and the narrow band flat-fading
channel with multiple TX-RX antennas is modeled as

y = H× x+ n, (1)

where y is the received vector, x is the transmitted vector, n
is the noise vector and H is the complex valued Channel Fre-
quency Response (CFR). Let Nt and Nr denote the number
of TX and RX antennas respectively, and Nc is the number
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Figure 2. Framework of WiFinger

of subcarriers, then H is a Nc × Nt × Nr dimensional ma-
trix. Noise is often modeled as circular symmetric complex
normal with n ∼ c · N(0,S). CSI is an estimation of H.
As the received signals are the resultant of constructive and
destructive interference of several multipath signals reflect-
ed from walls or other surround objects. While performing a
gesture near the receiver, hands or fingers can affect the prop-
agation of multipath signals, which leads to the variations in
amplitude and phase of CSI values among all subcarriers of
every TX-RX antenna pair and these variations can be used
to identify fine-grained gestures. The tool in [9] is employed
to report CSI values of 30 OFDM subcarriers, thus the mea-
sured H is a matrix with 30×Nt×Nr dimension. In addition,
we consider the CSI values captured from each TX-RX pair
as one CSI stream. Since CSI provides a finer-grained rep-
resentation of the wireless link compared with RSS, recent
researchers tend to utilize CSI rather than RSS.

WIFINGER OVERVIEW
WiFinger is a wireless system that utilizes commercial WiFi
devices to achieve human-computer interaction by recogniz-
ing people’s finger-grained gestures. Figure 2 illustrates the
framework of WiFinger, which can be divided into 3 parts.

For the first part, a transmitter and a receiver comprise the
CSI sampling unit. The transmitter is a wireless Access Point
(AP), e.g., a router or a laptop serving as a hot spot, and
the receiver can be a smart device, e.g., a laptop or a mobile
phone. In WiFinger, the transmitter has 1 directional anten-
na and the receiver is equiped with 3 (other than 1) omni-
directional antennas to achieve higher Signal Noise Ratio (S-
NR) as well as higher data rate [38].

While the system is working, the transmitter continuously
sends wireless packets to the receiver. These packets were
further sampled at the receiver side to extract CSI values. To
ensure finger-grained motions recognition, we set the sam-
pling rate to be Fs = 2000 packets/s. From each sam-
pled packet, a CSI matrix H is extracted, which has a size
of 30×1×3, as mentioned in the previous section. Although
we can obtain 1×3 CSI streams at the same time, only the CSI
stream 1-1 is selected, thus H can be simplified to a 30 × 1
dimensional matrix. The impact of multiple streams will be
covered in the Discussion and Limitation section. The se-
lected stream C contains a series of CSI matrices and is rep-
resented as C = [Ht1 ,Ht2 , · · · ,HtL ] = [c1, c2, · · · , c30]T
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with size 30× L, where ci(i = 1, 2, ..., 30) represents differ-
ent subcarriers.

In the second part, WiFinger minimizes the interference of
environment noise by applying various de-noising methods
to the original CSI stream. Then we use a novel gesture de-
tection method to eliminate the “silent” part of CSI stream,
and arrange gestures as separated finger gesture profiles.

The third part serves as a gesture recognizer. From each ges-
ture profile, a special designed feature vector is extracted. The
recognition of gestures is achieved by applying k-Nearest-
Neighbours (kNN) algorithm, where the distance between t-
wo feature vectors is measured with Dynamic Time Warping
(DTW). Besides, we compress the feature vectors with Dis-
crete Wavelet Transformation (DWT) to reduce the computa-
tional complexity of DTW.

SIGNAL PREPROCESSING
The original CSI stream extracted from commodity WiFi
NICs are inherently noisy, and its subcarriers usually have
different noise levels, thus we process the CSI values of dif-
ferent subcarriers independently. To refine the CSI stream for
finer-grained gestures recognition, WiFinger firstly removes
the impracticable outliers of each subcarrier, then passes them
through a low-pass filter to remove the high-frequency noise.
Although strict low-pass filter can obviously remove noise,
the noise within passband cannot be eliminated thoroughly.
Thus, further process is necessary. We show that a weighed
moving average method reduces these in-band noises effi-
ciently.

Outlier Removal
Because of the internal state transition such as transmission
power changes and transmission rate adaptation, there are
some burst noises in the selected CSI stream. Figure 3(a)
shows the CSI waveform of two consecutive finger gestures
of No.1. It can be observed that there are some abrupt fluc-
tuations in the waveform. Obviously, these outliers are not
induced by finger movements. Given that outliers probably
affect finger motion detection, WiFinger utilizes Hampel i-
dentifier [39] to eliminate these outliers. It declares all points
out of the interval [μ − γ × σ, μ + γ × σ] as outliers, where
μ and σ are the median and median absolute deviation of the
data sequence, γ varies in different situations and the most
widely used value is 3. Figure 3(b) plots the CSI waveform
after removing outliers.

Low-pass Filtering
In WiFinger, the speed of human finger gestures is low, and
the signal changes caused by finger motions lie at the low end
of the frequency spectrum while the noise induced by hard-
ware imperfection, e.g., carrier frequency offset, and channel
propagation, e.g., shadowing, has a relatively high frequen-
cy. Butterworth low-pass filter is a natural choice which has
maximum flat frequency response in the pass band and roll
off towards zero in the stop band, hence ensures the fidelity
of signals in target frequency range and removing out-band
noise greatly. Therefore, we apply the filter on the received
samples to eliminate the out-of-band interference. We exper-
imentally observe that the frequency of the variations in CSI
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Figure 4. Finger gestures detected by sign indicator.

stream due to finger gestures is often within 1 ∼ 60 Hz. We
set the output of the filter with a cut-off frequency of 60 Hz
when applied to the CSI values in Figure 3(b), with sampling
rate Fs = 2000 packets/s. The filtered waveform is shown
in Figure 3(c). Obviously, Butterworth low-pass filter suc-
cessfully removes most high frequency noise. However, the
noise cannot be completely eliminated, hence, we have to do
further processing towards the CSI stream.

Weighted Moving Average
Figure 3(c) shows the CSI stream of two consecutive ges-
tures, which is extracted from the third subcarrier of finger
gesture No.1. It can be observed that the CSI waveform
is still noisy for gesture extraction. WiFinger further intro-
duces weighted moving average method to the filtered CSI
stream. Specifically, as for the CSI values of the 3th sub-
carrier c3 = [ht1 , ht2 , · · · , htL ], the CSI value at time ti is
averaged by previous m values. The latest CSI value has the
highest weight m, thus

hti = h′ti =
1

m+ (m− 1) + · · ·+ 1
·

[m · hti + (m− 1) · hti−1
+ . . .+ hti−m+1

], (2)

where h′ti is the averaged new value at time ti. The value ofm
decides in what degree the current value is related to the his-
torical records [26]. Figure 3(d) shows the weighted moving
average waveform. We empirically set m = 30 in WiFinger
to achieve preferable denoising results. In the following, the
processed CSI stream is utilized to extract gestures.

GESTURE EXTRACTION
We show how WiFinger extracts the CSI stream for each fin-
ger gestures. The main effects of human finger motions on
the received CSI stream are either rising edges, falling edges,
or pausing. These variations are critical for detecting finger
gestures and the uniqueness of different variation patterns are
exploited to classify finger motions. To detect the starting
and finishing points of a gesture, we split the processed CSI
stream into segments.

Gesture Detection
To detect the finger gestures from the CSI stream, we refer
to [40] and design an adaptive method to detect the starting
and finishing points of finger gestures. We explain the step-
s to get sign indicator, and then, we dynamically get the
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Figure 3. The procedure of signal preprocessing.

threshold from sign indicators which is further applied to
extract finger gestures. The extraction process is arranged as
the following four steps.

1. Preprocessing: Firstly, WiFinger removes the Direct Cur-
rent (DC) component of every subcarrier by subtracting the
corresponding constant offsets from the CSI stream.The
constant offsets can be calculated through a long-term av-
eraging over different subcarriers. Then WiFinger cuts the
CSI stream C into bins with a sliding window. The win-
dow size is 500 and the step length is set as 400. Each bin
is a matrix of size 30× 500, represented as M.

2. Correlation estimation: WiFinger calculates the correla-

tion matrix as MT × M. The dimension of the correlation
matrix equals the number of CSI subcarriers extracted from
Intel 5300 NIC.

3. Sign indicator calculation: WiFinger calculates the eigen-
vectors and eigenvalues of the correlation matrix base on a
key observation. Namely, when there is no gesture or mo-
tion in the experimental environment, the second eigenvec-
tor q2 varies randomly over neighboring subcarriers. How-
ever, when a finger gesture happens, the CSI subcarriers
become correlated, q2 varies smoothly and its mean of first

difference δq2
= 1

Nc−1

∑Nc

l=2 |q2(l)− q2(l − 1)| becomes

smaller, where Nc represents the number of CSI subcar-
riers and |q2(l)− q2(l − 1)| represents the difference in
coefficients for neighboring subcarriers. Besides, the oc-
currence of gestures results in a higher variance E{h2

2} of

the principal component h2. Thus we define E{h2
2}/δq2

,
as a sign indicator to indicate the occurrence of finger
motions.

4. Smoothing: As is shown in Figure 4(a), there are some
abrupt changes in the waveform of sign indicator which
are likely to lead to fallacious results of detection. There-
fore, we apply a 5-point median filter to the set of
sign indicator to facilitate the detection of finger motions.

Finger Gesture Profile Extraction
Considering the characteristics of sign indicator values cal-
culated above, we empirically select the value of the third
quartile of the sign indicator values as a threshold to au-
tomatically detect and extract finger gestures. The thresh-
old can be dynamically adjusted in accordance with varia-
tion of CSI values in real time. Figure 4(a) and 4(b) plot the

sign indicator before and after applying 5-point median fil-
ter. We observe that 5-point median filter facilitates finger
gesture extraction in WiFinger.

In the process of gesture extraction, WiFinger sets a guard
interval T b on both side of the estimated finger gesture
profile. The algorithm compares the values in the set
of sign indicator with threshold to obtain their intersec-
tions as the candidates of starting or finishing points of
finger gestures. For example, says the candidate set is
{ts1, te1, ts2, te2, · · · tsn, ten}. Then the starting points should mi-
nus T b and the finishing points plus T b. The purpose of
guard interval is to better obtain the complete finger gesture
profiles. Hence the candidate set turns into {ts1 − T b, te1 +
T b, ts2 − T b, te2 + T b, · · · tsn − T b, ten + T b}. The CSI val-
ues between each pair of starting and finishing points are
mentioned as finger gesture profiles, represented as Pi =
[Htsi−T b , · · ·Htei+T b ](i = 1, 2, · · ·n). Pi has a size ofNc×l,
whereNc = 30 represents the amount of CSI subcarriers, and
l = tei − tsi + 2 · T b represents gesture duration. The profiles
of different subcarriers is represented as pi(i = 1, 2, · · ·n).

FEATURE EXTRACTION
After finger gesture profile extraction, WiFinger obtains mo-
tion profiles for different finger gestures. Figure 5(a) to 5(c)
show the CSI values variation in 30 subcarriers of digits 1, 4,
7 in ASL. According to characteristics depicted by these time
series patterns of different finger gestures, we find that simply
utilizing a single subcarrier or several subcarriers cannot fully
represent the distinguishable features of each finger motion.
The finger motion features distribute in all 30 subcarriers, Wi-
Finger must integrate those distributed features to identify d-
ifferent finger motions. Hence WiFinger combines 30 sub-
carriers by averaging every 6 subcarriers, and then WiFinger
concatenates them to form a synthetic waveform, mentioned
as a feature vector F = [f1∼6, f7∼12, f13∼18, f19∼24, f25∼30],

where fk∼l = 1
l−k+1

∑l
i=k pi. Figure 5(d) to Figure 5(f)

show the compressed synthetic feature vector for finger ges-
ture No.1, No.4 and No.7, respectively. The component in ev-
ery colored bar of each figure is the averaged result of every
6 subcarriers. The details of compressing synthetic feature
vector will be addressed next.

CLASSIFICATION
Considering the feature vectors of different finger gestures
contain thousands of CSI values, directly using the synthet-
ic waveforms as the input of classification algorithm leads to
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Figure 5. The features of different finger gestures.

high computational costs. WiFinger compresses the feature
vectors by utilizing DWT. The advantage of DWT are two-
folds: 1) It compresses the original signal while preserving
both time and frequency domain information. This attribute
facilitates the signal analysis and reduces the computational
cost in the process of classification. 2) In WiFinger, the finger
gestures are finer-grained movement, DWT realizes multi-
scale analysis towards finger gesture profiles. Owing to the
lengths of finger gesture features are not equal, Euclidean dis-
tance is not suitable in this scenario. To distinguish the minute
difference among finger movements, WiFinger exploits DTW
to calculate the distance between two finger gesture features.

Discrete Wavelet Transformation
The classical Fourier transform and short-time Fourier trans-
form do not provide multiple resolution in time and frequen-
cy, which is an important characteristic for analyzing tran-
sient signals containing both high and low frequency compo-
nents. The Discrete Wavelet Transformation overcomes those
limitations by employing analyzing functions that are local
both in time and frequency. The DWT is defined by the fol-
lowing equation:

W (j, k) =
∑

j

∑

k

x(k)2−j/2ψ(2−jn− k) (3)

where ψ(t) is a time function with finite energy and fast de-
cay called the mother wavelet. The DWT analysis can be
performed using a fast, pyramidal algorithm related to mul-
tirate filterbanks [41]. In the pyramidal algorithm the signal
is analyzed at different frequency bands with different resolu-
tion by decomposing the signal into a coarse approximation
coefficients and detail coefficients. The coarse approxima-
tion coefficients is then further decomposed using the same
wavelet decomposition step. The complete binary tree in the
decomposition process can be shown in Figure 6.

The efficacy of wavelet transformation depends on selecting
appropriate wavelet basis. In WiFinger, several wavelet fam-
ilies have been tested such as Daubechies, Coiflets, Symlets.
Due to the classification performance, the Daubechies D4 co-
efficient wavelet family is selected.

Dynamic Time Warping
WiFinger utilizes kNN classifier to recognize different finger
gestures. Traditional kNN classifier adopts Euclidean dis-
tance as the measurement criteria between samples. Con-
sidering the feature vectors of gestures might not share the
same length, we use DTW to calculate the distances among
features. In contrast to Euclidean distance, DTW provides in-
tuitive distance between two waveform and can be resilient
to signal distortion or shift. DTW distance is the Euclidean
distance of the optimal warping path between two waveform-
s calculated under boundary conditions and local path con-
straints [42]. The objective of DTW is to compare two (time-
dependent) series X = (x1, x2, · · · , xn) of length n ∈ N+

and Y = (y1, y2, · · · , ym) of length m ∈ N+. These se-
quences may be discrete signals (time series) or, more gener-
ally, feature sequences sampled at equidistant points in time.
DTW can handle waveforms with different lengths and calcu-
lates distance by recovering optimal alignments between the
two time series. WiFinger feeds the finger gesture features
to kNN classifier and obtains a decision. The kNN classifi-
er uses DTW to calculate the distance between finger gesture

X[n]
L[n]

H[n]

 2

 2 Level 1 
coefficients

L[n]

H[n]

 2

 2

Level 2 
coefficients

Level 3 
coefficientsL[n]

H[n]

 2

 2

Figure 6. Discrete wavelet transformation structure
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Figure 7. The experimental setup of WiFinger.

features, and searches for the class majority label among k
nearest neighbors of the corresponding finger gesture feature.

IMPLEMENTATION & EVALUATION

Hardware Setup
In the experiment, we use one 3.2 GHz dual core CPU, 4G-
B ROM desktop, which is equipped with Intel 5300 NIC, as
the receiver, and its operating system is Ubuntu 12.04. A TP-
LINK TLWDR4300 wireless router connecting to a laptop
with a cable is deployed as the transmitter, and the router is
set as a AP. The AP possesses one DB-Link directional an-
tenna and operates in IEEE 802.11n AP mode at 5.745 GHz
(channel 149). The receiver has 3 omni-directional antennas
and its firmware is modified as in [43] to report CSI to up-
per layers. In addition, the laptop also serves as a Monitor
Point (MP) and connects to the receiver by SSH, which real-
izes remote control to minimize the interferences from other
operators. The receiver and the AP are posited on cabinet-
s at the same height. The distance between the receiver and
the AP is 50 cm, and the user performs finger gestures in
the middle of Line-Of-Sight (LOS) path between TX and RX
antennas. We set the directional antenna facing the receiv-
er, which enhances the received signals to capture the subtle
signal changes caused by finger gestures of the target user.
Figure 7 illustrates the experimental setup of WiFinger. Dur-
ing the measurement campaign, the MP continuously sends
packets with a high data rate of about 2000 packets/s to-
wards receiver using PKTGEN tool through the WiFi router.
Setting a higher sending packets frequency leads to a high-
er sampling rate of CSI, which ensures the time resolution of
CSI values for capturing the subtle changes in CSI stream and
maximizes the details of different finger motions.

Controlled Gesturing
To accurately measure the CSI variations caused by finger
motions during data collection, we ask users to sit on a fixed
chair aside the middle of LOS path between transceivers. For
the sake of avoiding the interferences caused by the move-
ment of other human body parts, we instruct the users not
to move their heads or other body parts in significant scale.
Users perform the gestures naturally while keeping the in-
terval time of gestures between 1 to 2 seconds to make the
starting and finishing points of finger motions easily to be
identified. When the user performs finger gestures, his/her
hand remains in the fixed position continuously and only the

Figure 8. The way of user performing finger gestures.
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Figure 9. Finger gesture extraction accuracy per gesture for users 1-10

fingers move. Figure 8 shows how the user performs gesture
“3” and gesture “5” successively.

Data Collection
We collect training and testing data from 10 users to feed the
classification algorithm. Those users are college students who
volunteered to collect experiment data for WiFinger. We give
them a brief introduction about the finger gestures digit 1 to 9
in ASL. Users 2-10 perform these gestures each for 35 times
under our environment to build the training data sets. To e-
valuate the effects of training samples in different size. We
collect 70 instances for each of the 9 finger-grained gestures
from user 1. The users perform the gestures sequences nat-
urally with an average time interval at 2 seconds. We totally
acquire 3465 instances for WiFinger. After that, we random-
ly generate 20 sequences using matlab with 18 digits per se-
quence, and each user chooses 5 sequences to perform. Wi-
Finger selects the CSI stream of the above instances, and pro-
cesses the original CSI values following three steps: signal
preprocessing, gesture extraction and then classification.

Automatic Gesture Extraction Accuracy
We evaluate the accuracy of the finger motion detection al-
gorithm in WiFinger. The detection accuracy is defined as
the ratio of total number of correctly extracted finger gesture
profiles to the total number of finger motions performed by
each user. Figure 9 plots the percentage of correctly extracted
finger motions of 9 digits from 10 users.

As the figure shows, the detection accuracy varies among
users. This is caused by the habits of performing finger mo-
tions. Different users probably perform the same gesture in
slightly different ways or orientations. The behaviors of per-
forming finger motions affect the detection rates of WiFinger.
For example, we observed that user 2 and user 7 separately
have average gesture detection ratio of 76% and 81%. We
also find that these two users sometimes cannot fully stretch
their fingers in some finger gestures. For instance, when they
perform finger gesture 3 and 9, their fingers stretch in small
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Figure 10. Recognition accuracy per gesture for users 1-10
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Figure 11. Finger gesture recognition accuracy per user

scale, which results in relatively inapparent variations in CSI
waveform. However, user 4 and 9 possess comparably a right
performing behaviors. Hence the gesture detection ratios of
user 4 and 9 are both above 98%. The extraction accuracy
can be further improved for the given users by adjusting the
parameters of algorithm in WiFinger.

Gesture Recognition Accuracy
Here, we elaborate the recognition accuracy of finger gesture
in WiFinger. We evaluate WiFinger with two kinds of exper-
iments. In the first experiment, we separately feed the user-
specific kNN classifiers using 35 profiles per finger gesture of
10 users. In all these experiments, we set k = 5, and then we
perform 10-fold cross validation on the finger gesture features
in each classifier to acquire the recognition accuracy of each
finger gesture. In the second experiment, we test each clas-
sifier using corresponding three randomly selected 18 digit
sequences performed by each user. As the results show, Wi-
Finger provides a recognition accuracy more than 90% for
the continuously random 18 digit sequences. Next, we give
detailed explanations for the evaluation process of WiFinger.

Average Recognition Accuracy
We evaluate the recognition accuracy of WiFinger using av-
erage recognition accuracy per user and average recognition
accuracy per finger gesture. For each user, we calculate the
mean value of the total recognition accuracy of 9 digits finger
gestures. And we also get the average accuracy per finger ges-
ture of all 10 users. Figure 10 shows the average recognition
accuracy per gesture. We observe that the recognition accu-
racies of gesture 3 and 9 are around 85% which are relatively
lower than the other gestures. This is because we set the ini-
tial gesture as a fist, and gesture 3 and 9 need to open several
consecutive fingers by a large margin. Some users hardly per-
form these gestures with a fully opened palm, hence lead to a
relatively low recognition accuracy. However, the overall fin-
ger gesture recognition accuracy is still more than 90%. Fig-
ure 11 plots the average recognition accuracy per user. As the

Figure 12. The average accuracy for user 1 using different instances per
gesture
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Figure 13. The average accuracy per sequence for all users

result shows that the recognition accuracy of user 5 is around
80%, this is related to his behaviors when he performs finger
gestures. The sitting posture and the behaviors of performing
gestures will affect the recognition accuracy in our scheme.

Impacts of Training Set Size
To evaluate the impact of the training set size. We increase the
number of training samples per finger gesture from 35 to 70.
And we perform 10-fold cross validation towards the 9 finger
gestures when 35 and 70 training samples are used per ges-
ture. Figure 12 plots the recognition accuracy for user 1 with
two different training set size. We observe that the average
recognition accuracy increased from 93.37% to 96.25% for
user 1 with the number of training samples increasing from
35 to 70.

Number Text Input Using WiFinger
To evaluate the accuracy of continuous text input in WiFinger,
we collected CSI values for the randomly selected 18 digit-
s sequences performed by different users as mentioned be-
fore. We use the dataset of individual finger gesture features
as training set, and the extracted finger gesture features from
the corresponding three randomly selected 18 digit sequences
of the same user as test data to feed the classifier. As is shown
by Figure 13. WiFinger achieves average recognition accura-
cy of 82.67% for all finger gesture sequences.

DISCUSSTION AND LIMITATIONS
In our current experimental environment such as laboratory
and dormitory, WiFinger runs well under a relatively stable
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Figure 14. Finger gesture No.3 in two different multipath environment.
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Figure 15. CSI variations caused by finger gesture No.3 in different CSI
streams.

environment with only two occupants, a target user and a sys-
tem controller. The accuracy of WiFinger is related to the
variations of environment such as human moving around the
target user, the orientation and distance between transmitter
and receiver. The following illustrations are some discussions
of WiFinger.

Differences among TX-RX Antenna Pairs
Antennas separated by more than half a wavelength (>
2.6 cm at 5.745 GHz) have independent fading channels [38].
In WiFinger, the distances between each two RX antennas are
greater than 2.6 cm, and we totally obtain 1× 3 CSI streams.
To understand the differences among TX-RX antenna pairs,
we analyzed all 3 CSI streams in our experiment. We have
the following observation: (1) Figure 14(a), Figure 15(a) and
Figure 15(b) illustrate the CSI variations caused by the same
finger gesture No.3 in all 3 CSI streams, respectively, and
they are dramatically different. (2) It improves finger ges-
ture recognition by integrating features resulted from finger
gesture in all 3 CSI streams, because combining all 3 stream-
s can obtain more detailed and distinguishable features for
finger gestures. (3) However, it absolutely increases the time
and space complexity during DTW. WiFinger finds a trade-off
between accuracy and computational complexity and selects
only one stream to recognize finger gestures.

Interference with Multipath Reflection
In our experiment, the variations in the environment may af-
fect the accuracy of WiFinger, such as human body motions
and moving objects around the target user. WiFinger is de-
signed only for single target user with a system administrator
who guides the target user during the data collection. Fig-
ure 14(a) and 14(b) show the CSI stream patterns of two dif-
ferent environments in the same 5 GHz band. Environment 1
is our original experimental environment. In addition, we add
two chairs and a cabinet around the receiver to form Environ-
ment 2. Thus, there are different multipath reflectors in these
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Figure 17. Features comparison at 2.4 GHz and 5 GHz.

two environments. We observe that they almost have approx-
imate patterns in the two different environments. Moreover,
owing to the directivity of our TX antenna, a irrelevant per-
son who walks or twists his body out of the coverage range
has little interference on WiFinger. Hence, WiFinger is re-
silient to the static reflections or some marginal interferences.
However, when another person moves around the target user,
his activities can disturb or even cover the minute CSI fluctua-
tions induced by finger gestures, which leads to unsatisfactory
results.

Devices Positioning
WiFinger applies DB-Link directional antenna operating in
the 5GHz frequency band. We test the classification results
under different distances of transceivers with the target user
sitting aside in the middle between TX and RX antennas. We
put the receiver at a fixed position and adjust the position of
the transmitter. Figure 16(a), 16(b) and 16(c) show the wave-
forms of finger gesture No.2 at different distances between
transceivers. We find that the detected finger gesture patterns
get weaker with the distance between transceivers increasing.
And when the distance exceeds 1m, the patterns caused by
finger gestures in CSI stream nearly disappeared. Therefore,
in order to capture obvious and stable finger gesture pattern-
s in CSI stream, we should place transceivers at a relatively
close distance.

Different Frequency Band
Due to the large number of devices operating at 2.4 GHz
in our surrounding environment, 2.4 GHz frequency band is
crowded and more vulnerable to be interfered. To validate
the impacts of different frequency bands, we install the trans-
mitter with another directional antenna TL-ANT2406A and
operate it in IEEE 802.11n AP mode at 2.432 GHz (channel
5) and collect CSI values of the same pre-set finger gestures.
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Figure 16. Different distances between transceivers.

After comparing the differences of CSI streams modulated
by finger motions in 2.4 GHz and 5 GHz frequency band,
we have the following observations. First, the period of fin-
ger gestures and their amplitudes at 2.4 GHz are relatively
smaller than that at 5 GHz. The waveform possesses more
noise component at 2.4 GHz, which can be shown in Fig-
ure 17(a) and 17(b). Second, as Figure 17(c) to 17(f) show,
compared with the CSI streams at 5 GHz, the CSI streams at
2.4 GHz are highly correlated. This is because the channel-
s in 2.4 GHz band have a high overlapping ratio, however,
they are not overlapped in 5 GHz [44, 45]. Third, we find
that the CSI variations caused by different finger gestures are
weaker at 2.4 GHz. Considering 2.4 GHz frequency band suf-
fers more serious interferences, and the frequencies of phase
change caused by the same finger gestures are lower. Specif-
ically, a finger gesture moving at a speed of v m/s can result

in a maximum Doppler shift of 2f
c v, where f is the frequency

of one OFDM subcarrier [46]. For example, a 0.5m/s finger
gesture results in a 8 Hz Doppler shift in a 2.4 GHz frequency
band and a 17 Hz Doppler shift in a 5 GHz band.

CSI Sampling Rate
Sampling rate is extremely important for finer-grained ges-
ture recognition, because the changes caused by finger mo-
tions are subtle. The accuracies of finger motion detection
and extraction both rely on a high time resolution of CSI val-
ues. Higher sampling rate means more CSI values between
the starting and finishing point of each gesture, which con-
tains more information in CSI waveform, hence increases the
finger motion extraction and classification accuracy. To ver-
ify this assumption, we also test WiFinger at sampling rate
of 500 packets/s, and ask user 1 to perform 35 times per
finger gesture. We find that the periods of finger gestures in
collected CSI streams are obviously shorter. Therefore, we
adjust the parameters in WiFinger such as segment window
length, sliding step length and guard interval. We perform
10-fold cross validation on the data obtained. After evalua-
tion, the average recognition accuracy with a sampling rate
of 500 packets/s is 80.95%. However, the average recog-
nition accuracy is 93.38% when the sampling rate reaches
2000 packets/s. Thus, CSI sampling rate is especially im-
portant for finer-grained gesture recognition in WiFi environ-
ment.

Context-based Error Correction
For the the environment and users that WiFinger has been
trained on, it achieves an average accuracy of more than 90%.
Currently, WiFinger enables the recognition and number text

input using 9 digit finger gestures from ASL. In future work,
we prepare to enlarge the finger gesture set and achieve text
input of any characters or sentences with high accuracy. We
note that the recognition accuracy could be further improved
by utilizing context-based error correction. This idea is in-
spired by widely used context-aware approaches in automatic
speech recognition [47]. For example, when the target us-
er continuously performs finger gestures to achieve contin-
uous text input using WiFinger. When WiFinger detects a
wrong word like “gestuer”, WiFinger can automatically dis-
tinguish and recognize “gesture” instead of “gestuer” based
on the context. This method reduces the recognition mistakes
and facilitates the recognition of gestures in WiFinger.

CONCLUSION
In this paper, we present WiFinger, a novel system that en-
ables WiFi signals to realize continuously number text input
in WiFi devices by recognizing finger-grained gestures from
American Sign Language. WiFinger exploits the ubiquitous
WiFi signals to sense finger-grained gesture, and it does not
need any specialized hardware devices. Hence it can be ex-
tended easily to commercial Wi-Fi products. The preliminary
results show that WiFinger achieves high recognition accu-
racy with an average recognition accuracy 90.4% per user.
WiFinger collects channel state information available in the
existing WiFi devices. We benefit from the observation that
different human activities, for example finger gestures, lead
to a number of unique CSI time-series patterns. Thus, we
are inspired to explore the potential of sensing finger-grained
gestures under wireless environment. Compared with oth-
er gesture recognition schemes, WiFinger is a non-intrusive
and device-free solutions in finger-grained gesture recogni-
tion. Given that our scheme is able to identify subtle changes
caused by tiny movement of human body, therefore, it can
be extended and improved to wide areas such as fine-grained
gesture recognition, human activities detection, or any motion
recognition scenarios.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their in-
sightful comments for improving the quality of the paper. We
thank the volunteers in our lab who helped us in collecting the
finger gesture dataset. This work was supported by the Na-
tional Natural Science Foundation of China (No. 61572456)
and the Natural Science Foundation of Jiangsu Province of
China (No. BK20151241).

259

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



REFERENCES
1. Ali, K., Liu, A. X., Wang, W., and Shahzad, M.

Keystroke recognition using wifi signals. In Proc of
ACM MobiCom (2015), 90–102.

2. Wang, G., Zou, Y., Zhou, Z., k. wu, and Ni, L. We can
hear you with wi-fi! In Proc of ACM MobiCom (2014),
593–604.

3. Gupta, S., Morris, D., Patel, S., and Tan, D. Soundwave:
using the doppler effect to sense gestures. In Proc of the
SIGCHI Conference on Human Factors in Computing
Systems (2012), 1911–1914.

4. Leap Motion. https://www.leapmotion.com.

5. Microsoft Kinect. http:
//www.roborealm.com/help/MicrosoftKinect.php.

6. Pu, Q., Gupta, S., Gollakota, S., and Patel, S.
Whole-home gesture recognition using wireless signals.
In Proc of ACM MobiCom (2013), 27–38.

7. Adib, F., and Katabi, D. See through walls with wifi! In
Proc of ACM SIGCOMM (2013), 75–86.

8. Melgarejo, P., Zhang, X., Ramanathan, P., and Chu, D.
Leveraging directional antenna capabilities for
fine-grained gesture recognition. In Proc of ACM
UbiComp (2014), 541–551.

9. Halperin, D., Hu, W., Sheth, A., and Wetherall, D. Tool
release: Gathering 802.11n traces with channel state
information. ACM SIGCOMM Computer
Communication Review 41, 1 (2011), 53–53.

10. Sturman, D. J., and Zeltzer, D. A survey of glove-based
input. IEEE Computer Graphics and Applications 14, 1
(1994), 30–39.

11. Dipietro, L., Sabatini, A. M., and Dario, P. A survey of
glove-based systems and their applications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 38, 4 (2008), 461–482.

12. Finger Gesture.
http://www.lifeprint.com/dictionary.htm.

13. Scholz, M., Riedel, T., Hock, M., and Beigl, M.
Device-free and device-bound activity recognition using
radio signal strength. In Proc of the 4th Augmented
Human International Conference, ACM (2013),
100–107.

14. Tarzia, S. P., Dick, R. P., Dinda, P. A., and Memik, G.
Sonar-based measurement of user presence and
attention. In Proc of ACM UbiComp (2009), 89–92.

15. Zhao, Y., Patwari, N., Phillips, J. M., and
Venkatasubramanian, S. Radio tomographic imaging
and tracking of stationary and moving people via kernel
distance. In Proc of the 12th international conference on
Information processing in sensor networks (2013),
229–240.

16. Starner, T., and Pentland, A. Real-time american sign
language recognition from video using hidden markov
models. In Motion-Based Recognition. Springer, 1997,
227–243.
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